

Nature-based solutions in managed ecosystems (agriculture, forestry, fisheries)

Reuben Sessa (OCB) & Beau Damen (RAP)

- 12 October 2022

Nature-based

Solutions (NbS)

"Nature-based solutions are actions to protect, conserve, restore, sustainably use and manage natural or modified terrestrial, freshwater, coastal and marine ecosystems which address social, economic and environmental challenges effectively and adaptively, while simultaneously providing human well-being, ecosystem services, resilience and biodiversity benefits"

UNEA, March 2022

Nature-based Solutions (NbS)

NbS use to managed ecosystems (agriculture, forestry, fisheries).

Agroecology, agroforestry, climate-smart agriculture, ecosystem-based adaptation, ecosystem-based disaster risk reduction, forest and landscape restoration, integrated water resource management, integrated pest management, land-based mitigation options, sustainable land management, etc.

Nature-based

Solutions (NbS)

NbS in managed ecosystems can be grouped in three main categories, according to their main objective (as identified in the UNEA definition):

- i. Actions to protect and conserve managed ecosystems and their ecosystem functions (e.g. protected areas);
- ii. Sustainable management practices primarily for production purpose (e.g. agroecology, agroforestry, organic agriculture, integrated pest management);
- iii. Actions to restore (or re-create) managed ecosystems and their ecosystem functions including amelioration and green infrastructure (e.g. tree planting, conservation agriculture, constructed wetlands).

Nature-based

Solutions (NbS)

FAO NbS "framework"

• FAO's approach to NbS in managed ecosystems (agriculture, forestry, fisheries).

FAO consultations

Through establish FAO NbS focal points

from divisions and decentralized

offices

FAO

NbS

approach

Nature-based Solutions (NbS)

LOA

- Land and Water Division
- Policy and finance analysis for NbS use in managed systems

Nature-based Solutions (NbS)

NbS case studies

- Vietnam baseline (RAP)
- Columbia and Chile, dry corridor (REDD++)(RLC)
- SIDS whole island approach (SLC)
- Land and water (NSL)
- NbS approach for carbon markets (CFI)
- Urban and per-urban settings (UN Decade)
- Resilience and DRR (OER)

Modular system

- Biodiversity
- Water regulation
- CCA and CCM
- Energy

Nature-based
 Solutions (NbS)

FAO Country Support Packages + Training

Overview of NbS and how it relates to FAO's mandate

 Technical linkages to existing tools and concepts (forest, ag, fisheries)

- Global scope of NbS
- Funding opportunities (GEF8, GCF, adaptation funds)
- Case studies + other resources

Nature-based Solutions (NbS)

Partnerships

Joint document and side events UNFCCC and CBC

Possible next areas:

- Tools and modules
- Country joint actions
- Joint proposals and country approaches
- Advocacy in global settings

Initial discussions

Nature-based Solutions (NbS)

UNEA resolution co-sponsors

Costa Rica

Colombia

Montenegro

Pakistan

Peru

Principality of Monaco

Republic of North Macedonia

Serbia

United Kingdom

Countries to assess

Ireland

Zambia

Bangladesh

Etc.

Nature-based
 Solutions (NbS)

Additional 2023 future areas:

- On line portal for research and operations, with contributions of professionals, research and youth.
- Linkage to the UN Decade

Tools and methodology

In practice: NBS in agricultural landscapes

- Assumes that major agricultural production systems lead to ecosystem degradation over time
- NBS target improvements in different ecosystem functions
- NBS are usually multifunctional
- Possible to design structured combination of NBS
- NbS is a multi-disciplinary approach focused on local needs and perspectives

'Framework' for conceptualizing NBS options in agriculture landscapes

Sustainable management practices - primarily for production purpose

Actions to restore (or re-create) managed ecosystems and their ecosystem functions

Sustainable practices

- Sustain or increase agricultural production by means other than standard approaches
- Retain or increase available nutrients in soil, water and plants
- Improve microclimate

Green Infrastructure

- Regulate water flows
- Prevent soil erosion (soil quality)
- Stabilise slopes

Amelioration

- Remove, degrade or contain pollutants in water, soil or air
- Restore or stimulate beneficial biota for soil health, pollination or pest control
- Sequestration of carbon

Protect and conserve managed ecosystems and their ecosystem functions (e.g. protected areas)

Conservation

- Increase or protect biological diversity and habitat (field scale)
- Enhance connectivity and health of ecosystems (large scale)

Experience to date

- Regional engagement with policy makers
- NBS planning approach developed and applied in the development of GEF-7 and Adaptation Fund projects:
 - Cambodia
 - India
 - Myanmar
 - Vietnam

STEP 1 - Baseline situation

Existing condition and practices and likely future trends

STEP 2 - Problems, their causes, magnitudes and impact

- Problem quantification and severity
- Location and scale
- Causes agricultural/other
- Timeframe and impact: agriculture and social

STEP 3 – Wider enabling environment for NBS

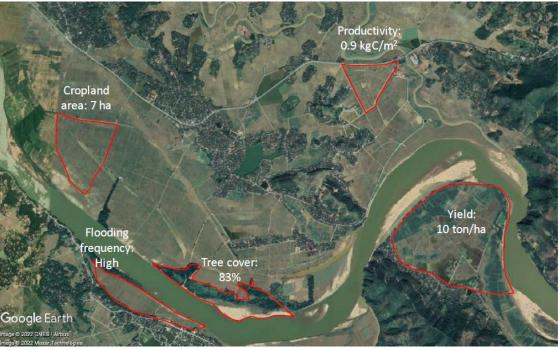
Current constraints and enabling conditions

STEP 4 - NBS solutions that are likely to resolve specific problems

- Review of current solution proposed in project
- Possible additional solutions
- Scale, impact and resilience

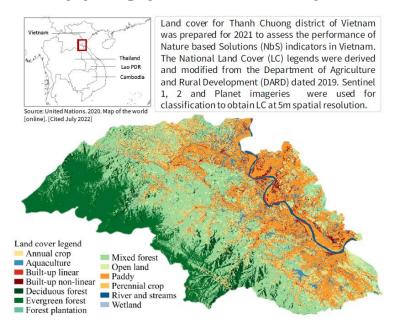
Considerations for practical application of NBS

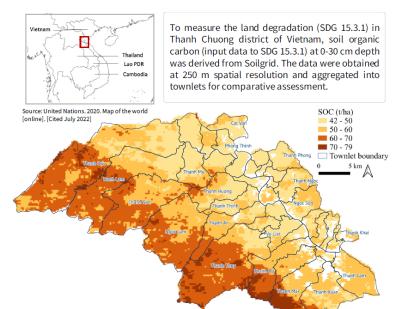
- Application of NBS requires additional consideration of scale and time; particularly how to best spatially and temporally:
 - select and sequence what and how to intervene to generate positive biophysical interactions and social benefits in and between agroecosystems, and
 - sustainably expand connectivity of positive interactions.
- NBS is **an inclusive and people-centered approach** that aims to enhance ecosystem functions for the benefit of people and the environment.
- In practice, NBS will often build upon and combine a range of existing concepts, measures, practices and



NBS work at FAO Asia-Pacific

- Development of practical tools to support design and monitoring of NBS:
 - Process for ex-ante multi-criteria assessment of NBS options.
 - 2. Inclusive, multi-disciplinary NBS planning approach for agriculture at local and national levels.
 - NBS knowledge management and monitoring system that links NBS interventions to SDGs.
 - 4. Geospatial tools for NBS planning and monitoring.
- Partnership with ICRAF, AIT and FAO Geospatial Team.





Defining initial indicators and geospatial tools to support PRA and Monitoring

NBS criterion	Name of	Unit	Description	Assessment tool
Related functions	indicators			
Sustainable Practice				
Sustain production	Agricultural	ton	For each main crop in the study site: production	Any GIS software
	production		per land area	
Sustain production,	Degraded land	ha	Based on land use changes overtime, lands are	SEPAL (SDG 15.3.1
maintain/improve	areas		classified into degraded, improved, or no change.	module)
soil fertility			The indicator refers to degraded areas	
Green Infrastructure				
Regulate water flow,	Surface run-off	%		InVEST
reduce soil erosion,	relative to			
enhance slope	precipitation			
stability	Average annual	tons ha-		SEPAL (SDG 15.3.1
	soil loss	¹ year ⁻¹		module)
	Cropland areas	ha	Based on flood frequency maps (low, moderate,	UNSPIDER
	exposed to		high flood frequency level) obtained from	Recommended Practice
	flood		historical flood record and analysis	in Google Earth Engine

Mapping product samples

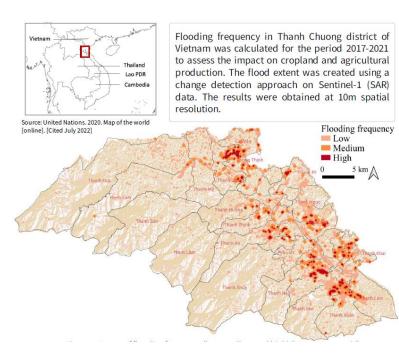
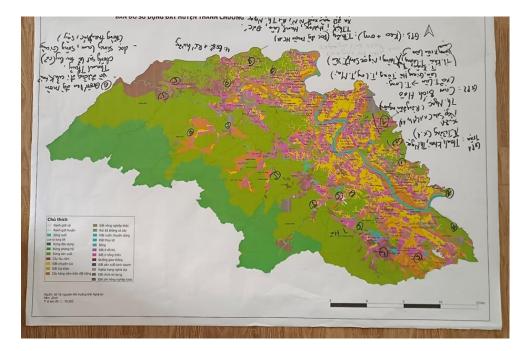
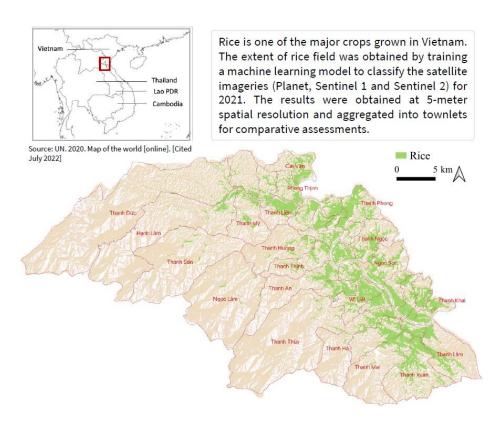



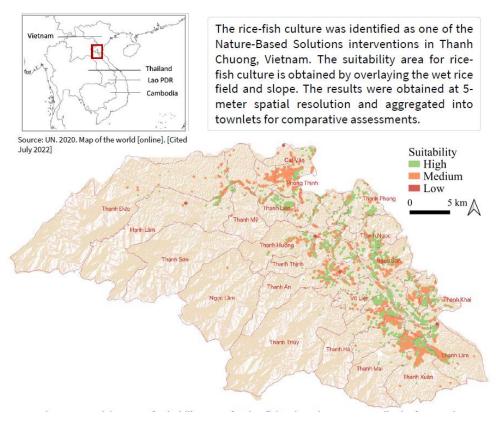
Figure: Land cover map (5m x 5m) for 2021 in Thanh Chuong district of Vietnam derived and modified from national LC legends (2019 DARD LULC)

Figure: Spatial extent of Soil Organic Carbon (SOC) at 0-30 cm depth (250m x 250m grid) in Thanh Chuong, Vietnam Figure: Extent of flooding frequency (low, medium and high) (in 10m x 10m grid) in Thanh Chuong, Vietnam for the period 2017-2021

PRA Example - Potential NBS in Thanh Lam commune, Vietnam

- Results of participatory identification of NBS options:
 - NbS 1 AF with timber trees for selective logging and medicinal plants over the hills
 - NbS 2 Rice-fish rotation in the lowland paddy rice areas)
 - NbS 3 Long-rotation acacia with honey bee
 - NbS 4 AF contour planting on sloping lands with timber or fruit trees, annual crops, and/or medicinal plants
 - NbS 5 Tea AF with perennial shading trees, timber or fruit trees, and/or temporary annual crops in the first two years




Initial lessons from PRA and MCA weighting exercise

- Increasing income is the most important concern for local communities
- Communities hesitant to disrupt income generating activities for example, people hesitant to intercrop trees into hills with trên because they are already generating income
- Labor is available and is not a crucial factor.
- Communities prefer fewer products to allow for a focus on management
- Soil erosion and soil fertility are a key concern
- Feedback received differs with administrative unit

Further targeting NBS

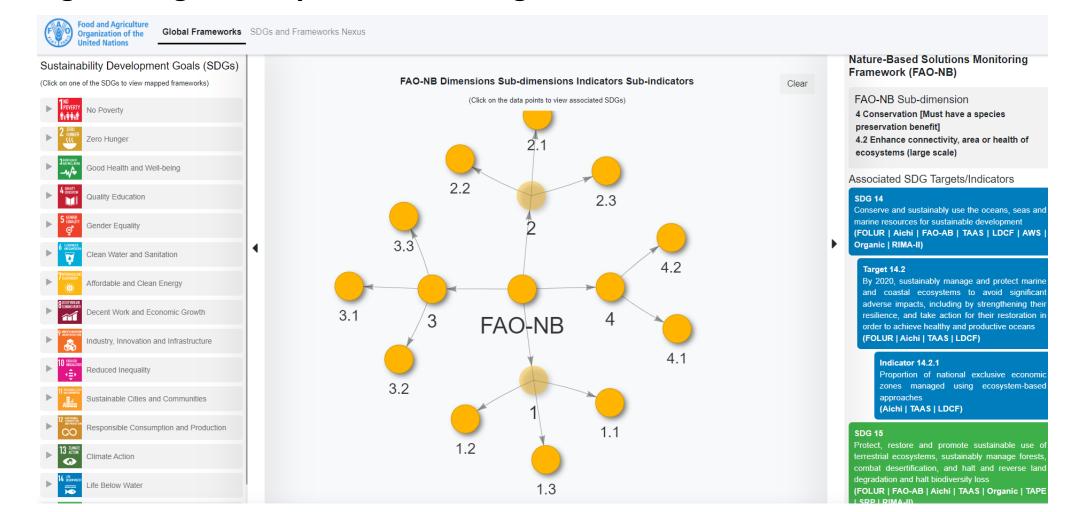

Figure: Spatial extent of rice field for 2021 in Thanh Chuong, Vietnam

Figure: Spatial extent of suitability areas for rice-fish culture in Con Cuong district for 2021

Knowledge management systems for linking NBS initiatives to SDGs

Next Steps

- Finalize assessment in Nghe An
- Finalize geospatial tool
- Assess options for platform integration with FAO HIHI and se.plan
- Finalize PRA and MCA reports
- Finalize online KMS platform
- Final submission of Vietnam Adaptation Fund project
- Development of NBS pipeline projects